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ABSTRACT

The order of a phase lock loop is determined by the
linear filter in the loop. Thus we say a phase lock loop is
of n+l order when there are n finite poles in the Laplace
transfer function of its linear filter under the restriction
that the number of zeros of this Laplace transform is no
greater than n.

In a previous memorandum (TM-69-2034-8) the behavior
of a first and a particular second order phase lock loop was
described in terms of the statistical behavior of two parameters,
namely the steady state phase error % and the time to cycle

slip T. This memorandum generalizes the work just described
in that the statistical behavior of ¢e and T is characterized

for a very large class of nEE order phase lock loops.
It is to be noted that the procedure developed in

this memo can be used to characterize the behavior of several
other nonlinear devices as, for example, the delay lock loop.
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TECHNICAL MEMORANDUM

The phase lock loop to be discussed is shown in
Figure 1

VZA sin(wot + el(t)) " x(t) Linear Filter with
+ n(t) Laplag?sTransform
/Echos (wyt+e,(t)) ‘ VCO
e(t)

Figure 1 Phase Lock Loop

The loop consists of three components, a multiplier,
a time-invariant linear filter g(t) whose Laplace transform is
G(s), and a voltage controlled oscillator (VCO). If the loap
is operating on a noiseless sine wave, then the steady state
output of the VCO is a quadrature replica of the input signal
which may differ only in amplitude. The multiplier output
x(t), under these conditions, will have only a double frequency
term which the linear filter and VCO configuration will not
pass. The linear filter has a second and equally important
function which is to reduce the effects of noise that normally
gets into the loop.
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In my previous memoranduml, the behavior of a first
and a particular second order loop was described in terms of
the statistics of two parameters; namely, the loop stationary

phase error 4¢(t)= el(t)'ez(t)’ and the time to cycle slip

T. Since both these parameters are random,ytheir behavior was
characterized statistically. That is ¢(t) was described in

terms of its probability density function while T was given in
terms of its first four moments which were shown to fit those
of a Pearson Type III density function.

At this point, the work of two other researchers is

briefly described. Lindsey2 recently published a paper in which
he obtained solutions for the time to cycle slip and the steady

state density of the phase error for a NEE-order generalized
tracker. His approach is an extension of Viterbi’s3 work in

which an nEE order phase lock loop is characterized by N first
order Markov differential equations. This leads to the
statistical characterization of the tracker by a N dimensional
Fokker-Planck equation (forward Kolmogorov equation). 1In
addition, Lindsey elegantly demonstrates the analogy between
the theory of continuous Markov processes and Maxwell's wave
equations.

Tausworthe4 has obtained results for the mean time

to cycle slip for the N—t-l'l order loop. In a footnote to his

paper, he describes a differential equation that the
characteristic function of the time to cycle slip parameter
satisfies. Use of this result could also lead to my results

for the nEE-moment of the time to cycle slip parameter for an

arbitrary NEE-order loop.

In this technical memorandum, the behavior of the
phase lock loop is characterized by a Markov like
process which leads quickly and simply to the statistical
characterization of the loop by both the forward and backward
Kolmogorov differential equations. We then make use of the

work of Darling and Siegert5 to derive results for the nEE

moment of the time to cycle slip parameter for an

nER order loop. This result is in the form of a differential

equation. It has been found by the author that although a
solution to this equation can be obtained, the evaluation of
the solution in most cases is a significant task, while direct
evaluation of the differential equation by

simulation on a digital computer is relatively simple.
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The class of linear filters for which our results will
be valid is defined as '

G(s) = C + H(s) (1)

where C is a constant and

H(s) = ———— with m<n (2)

the sets of [ai] and [bi] are constants chosen so that the phase
lock loop is stable and physically realizable.

It is assumed that the loop input is a sine wave plus
a stationary narrow band Gaussian process n{(t) of zero mean,
The noise n(t) may be represented as

n(t) = vZ [n (t)sinugt + n, (t)cosugt] (3"

0

.

where nl(t) and nz(t) are independent Gaussian processes of zero

mean and identical low pass spectral densities.The parameter u rad is
taken as the guiescent frequency output at the VCO. The specé%aﬁ?c
densities of n(t), nl(t) and nz(t) are assumed flat over a
sufficiently wide range so that with respect to the closed loop

bandwidth they can be approximated as white noise with the same
magnitude of NO/2 watts/Hz., **

*
The reader is referred to section 2.7 of Reference 3 for a
more detailed development of the noise model.

* %

NO = RT° watts/ Hz and is the one sided noise spectral

density where K = Boltzmann's constant and ™ = system noise
temperature, degrees Kelvin,
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If we define the input to the phase lock loop as v2 A sinfo t + 6, (t)]
then we may write the multiplier output x(t) as

x(t) AK

lsin¢(t) —Klnl(t) sinez(t) + Klnz(t)ccsez(t)

+ AK sin[Zth + el(t) + ez(t)] + Klnl(t)sin[Zwot + ez(t)]

1

+

Klnl(t)cos[Zwot + ez(t)] (4)

Since the VCO will not pass the double frequency
terms, they can be ignored. When the control signal to the VCO
is applied at t=0, the VCO frequency becomes ey + kze(t) where

K, is a proportionality constant at the VCO whose dimensions

are radians per second per volt. Thus the time derivative of
the loop phase error is

‘ de. (t)
de _ d _ _ 1 -
where
t
e(t) = Klj[.g(t—u) [Asing (u)+n' (u)]du (6)
with 0
"n'(t) = —nl(t)sinez(t) + nz(t)cosez(t)

Using equation (1), we can write equation (5) as

dGl(t)

X = 4 -KCAsing(t) + n'(t)1-f, (7)



BELLCOMM, INC. -5 -

where &
ft= K. h(t-u) [Asin¢ (u) + n'(u)]ldu (8)
0
K = KlKZ defined as the loop again

h(t) is the inverse Laplace transform of H(s).

This work parallels that given in Reference 1, and
much of the detail is omitted from the derivations that follow
since such detail can be obtained from the referenced work.

We define four variables descriptively in Figure 2
and write their joint density distribution as

P(¢l¢llftl¢o) = P(¢lr¢orft) * P(¢,¢ll¢orft) (9)

As is shown in Appendix C of Reference 1, integrating both sides
with respect to 9 and then factoring out P(¢O,ft) leads to

+o

P(¢‘¢Olft) = [ P(¢1‘¢Olft) P(¢‘¢lrft)d¢l (10)
J

-0

*
ft differs from its definition given in TM~69-2034-8
only by a constant multiplier for the second order loop.
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Thus we see that the conditional transitional

probabilities satisfy the Chapman Kolmogorov equations given
by equation (11)

f .+ At
/\fV-\t/__\
| |
PHASE § ! J
ERROR : !
pe TTTAT —:—NME
/
?1 / ¢ /
¢0 /\/—M
I / Ly
| / |/
L/ | 7
4
/ /
o 1 AT » TIME

FIGURE 2 - PHASE ERROR AND f AS A FUNCTION OF TIME (7)

Proceeding as we did in Appendix C of Reference 1
we have that

3P (¢ |60 ,EL) = n .n
1'¥o0""t O (=1)7 9
=% = = v, (0 EIP G o 0] +
— ¢
n=1
ar
t 9P
Jt IF, (6109, f) (1)
where

40
y_(6.,£) = lim —= (0~6 )P (4]6,,£.0d¢ n > 1 (12
nlfyrfe) = mg 1 17t J
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But the left side of equation (11) can be expanded
with the result that

(oylog,Fe)  BBog]04.E,) d¢l+aP<¢ll¢0,ft) A 13

ot - a¢l dt of dt

Equating the right side of equations (11) and (13) we

have
P (¢, | d.,F,)  db > n .n .
1'70' ¢ 1 _ (-1)" 3
3¢l dc = E: n! ﬂ[Yn(¢l'ft)P(¢ll¢0'ft) (14)
— | 09
n=1
It is easy to show that
del
-Yl(¢1,ft) = AKC sin ¢t + ft - 3
| C2K2N0
Y2(¢llft) = *—§—~*

|
o

yn(¢l,ft) for n > 2

Equation (14) then reduces to

8P (9 lo4,E)  do as
1'"'0" "t : 1
a¢l T = [CAKSln¢l(t) + ft - AT ]P(¢l|¢0'f+) +
2.2 2
C K NO 3 P(¢l|¢0'ft) (15)
4

2
3¢l
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We next multiply both sides of equation (15) by p(ft)

and then integrate over all values of ft with the result that

ap(¢104,) 5 _ ds .
———— = 56—I[AKSJ.ncbl + E[ftf¢l] - ~EE]P(¢1|¢O,)
KN, 2%P (0, [0,
+t =7 3 (16)
8¢l

where E[ft|¢l] is the expectation of f_ given the phase of the
received signal at time t. The conditional expectation of ft

cannot be evaluated exactly since it requires a knowledge of
the probability density distribution of o1 which we obviously
do not know.

It has been shownl’4 that for a second order phase
lock loop the approximation

ELf [67] % -edq (t) (17)

gives results which agree excellently with experimental findings.

Tauseworthe4 has shown that e can be obtained from a linear
approximation of the phase lock loop with the result that

2
27(0
e = AKC - 4é ) (18)

L

AKG(s) /s

where L(0) = lim sl35m=rsy7g

g

1 .
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The loop-noise bandwidth B, is defined as

] co .
1 AKG(s) /s AKG(~s) /s
i ‘j 1+AKG(s) /s AK G(-s) -1 ds (19)
—jw S

Viterbi computed B. and tabulated his results for several filters

L
in Reference 3.

To illustrate let

G(s) =1 + % , then
2
(AR) a
e = AK AK+a AR+o
4 (BBt

This is in agreement with the result presented in Reference 1.
If the linear approximation can be made or, more

generally, when E[ft|¢l] can be shown to be independent of t then

equation (16) defines a stationary Markov Process so that we can

use a result by Darling and Siegert5 to obtain the following
recursive relationship for the moments of the time to cycle
slip parameter T.

2.2
C"K™N 2_.°n das n
0 A"E[T] . - l}dE{T 1l _ . men-l
3 > [AKSln¢O + E[ft|¢0]- e - ot nE[T 1 (20)
d ¢O 0
where E[§°] =1
E[T"(2r)] = E[T®(-27)] = 0

- // // ‘
L s .
v £

2034-LS-5f L. Schuchman

Attachment
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